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Introduction 

Over 700 million people in the United States travel by air. Flying has become 

routine for many people who greatly value their time, and as travelers increasingly 

rely on airline companies for reasonable on-time performance, many of them fear 

departure delays that might ruin scheduled appointments or plans. While weather 

delays can be easily predicted by the severity of the weather, many passengers 

buy tickets long before any weather data is even up, but would still benefit from 

being able to predict a delay based on other telling factors.  Planes still suffer 

delays due to the overall efficiency of the plane preparation process, which is most 

likely dependent on the carrier, airports, and number of passengers a flight will 

have. 

With this in mind, we decided to create a tool that can predict the expected delay 

status of domestic flights based on historical flight data.  Our program will use 

conditions such as origin, destination, number of passengers, carrier, and delay 

times/reasons in order to learn whether a plane will be delayed. The tool will allow 

users to input an origin, destination, carrier, and in return will receive a delay 

prediction on a). how likely is the flight going to be delayed and b). by how much 

time will the flight be delayed. 
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Overview 

Our data size will be over a million, but we will work with 100,000 of the entire data 

set. In our tests, we will follow two different ideas and see which one yields a better 

result. We will run KNN for one of the tests and J48 decision tree for the other one. 

In our analysis section, we will talk more about each one and their performance. 

Our Goal 

As a team we worked together to set goals for our project. We decided before 

starting the project that our project must be reasonably quick. We are assuming 

that anyone who wants to predict a delay would prefer not to waste too much time 

waiting for the results. The second goal we set ourselves was to get ensure that we 

could reach at least 75% in our project’s accuracy. We decided that the lowest 

performance we would allow is accurately predicting three out of four flight delays 

statuses. 

Data 

We collected all data from on-time domestic flight information provided by the 

Bureau of Transportation Statistics located at http://www.rita.dot.gov/bts. From this 

data we extracted the following attributes: 

 Month 

 Departure Time: in hhmm format, local time 

 Arrival Time: in hhmm format, local time 

 Air Carrier: identified by a unique air carrier code (AA for American Airlines, 

etc.) 

 Origin Airport: identified by a unique airport code 

 Destination Airport: identified by a unique airport code 

http://www.rita.dot.gov/bts/


 Air Time: the duration of a flight in air 

 Distance: distance between airport 

 Origin Airport State: identified by the state code 

 Destination Airport State: identified by the state code 

 Arrival Delay Time: number of minutes delayed upon arrival 

 Carrier Delay: this is the information we are trying to predict. 

From this data we used MATLAB to do some pre-processing and partitioning in 

order to make the data a little easier to work with. First we cut down on the amount 

of data we had. When we had finished collecting data, we had nearly a million data 

points, so we wrote a script to create a new csv containing every 60th iterated data 

point to bring us down to a more workable 100,000 instances. 

A sample of the original data is shown in the table below: 

MONTH CARRIER ORIGIN_AIRPORT_ID DEST_AIRPORT_ID DEP_TIME ARR_TIME AIR_TIME DISTANCE ARR_DELAY CARRIER_DELAY 

1 9E 10397 10423 1425 1553 118 813 203  

1 9E 10397 10423 1228 1356 118 813 86  

1 9E 10397 10423 1053 1230 128 813 0  

1 9E 10397 10423 1047 1226 135 813 -4  



 
 

Analysis 

We decided to use MATLAB primarily for data processing and WEKA for running 

different algorithms on the dataset. Further, we originally proposed two strategies 

to tackle this problem. Each strategy leads us in a different direction as to how we 

do the data processing process. 

The first strategy is the “keep-data” strategy. We keep all the fields as they are in 

its original shape. In this strategy, we run Nearest Neighbor related algorithm. The 

assumption in this strategy is that flights with similar characteristics are likely to 

perform alike. For example, an aircraft departing from Chicago in the afternoon 

time is likely to experience delay. If we leave the data as they are in the original 

form, we hope to capture such similarities on the primitive level. 

1 9E 10397 14492 1753 1918 54 356 -2  

1 9E 10397 14492 1755 1915 56 356 -5  

1 9E 10397 14492 1846 2017 51 356 57  

1 9E 10397 14492 1859 2012 51 356 52  

1 9E 10397 14492 1752 1918 61 356 -2  



The second strategy is the “partition” strategy. In this strategy, we partition each 

field into a limited number of categories so that decision-tree related algorithms are 

more suitable in this case. Here, we assume that each field on a high level has the 

most significant impact on delays. For example, larger airports are more likely to 

experience delays. If we partition the dataset, we hope that decision tree can 

capture the field that impacts delay result the most. Below is the method we used 

to partition the data: 

 Departure Time: partitioned into morning, afternoon, evening and late night 

 Arrival Time: similar to departure time 

 Air Carrier: partitioned by number of appearances in the dataset. More 

appearance equals larger carriers 

 Origin Airport: partitioned by number of appearances 

 Destination Airport: similar to origin airport 

 Air Time: partitioned by number of hours 

 Distance: partitioned by 100 miles 

 Origin Airport State: partitioned into regions – Northeast, Northwest, South, 

West, Pacific, and Other. This was done manually through the dataset using 

excel  

o Northeast: All of New England, New York Pennsylvania, New Jersey 

o Northwest: Illinois, Indiana, Michigan, Ohio, Wisconsin 

Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, 

and South Dakota 



o South: Delaware, Florida, Georgia, Maryland, North Carolina, South 

Carolina, Virginia, West Virginia, Alabama, Kentucky, Mississippi, 

and Tennessee), Arkansas, Louisiana, Oklahoma, and Texas. 

o West: Arizona, Colorado, Idaho, Montana, Nevada, New 

Mexico, Utah, and Wyoming. 

o Pacific: Alaska, California, Hawaii, Oregon, and Washington) 

o Other: US Virgin Islands, Puerto Rico 

Although each attribute is listed as partitioned in the above list, when we 

implemented this strategy and ran tests, we sometimes kept some of the attributes 

intact. For example, for some tests, due to the limited number of air carriers in 

nature, we left air carriers intact to see how decision tree responds. Also, the 

number of partitions for each attribute was also frequently varied to test different 

responses from WEKA. For example, we originally partitioned distance by every 

100 miles, but there are too few flights that have 5, 6 or 7 hours of travel time since 

they are usually Hawaii-bound flights. So we also combined 5, 6, 7 hours into one 

category in many of our tests. 

For both of the two strategies, we ran two different sets of tests. All tests are 

performed under the 10-fold validation setting except for some instances of KNN 

where we did split train/test for the sake of speed. 

1. Whether the flight is delayed or not. In this case, we set a new field called 

“delay” to 0 or 1 based on the arrival delay attribute. Here, we also need to 

make a decision to define delay. We tried three strategies for comparison. In 

this first one, a flight is not delayed if the arrival delay time is below or equal 



to 0 (if you arrive 1 minute late, you are delayed). Second, a flight is not 

delayed if it arrives 5 minutes or less late (if you arrive 6 minutes late, you 

are delayed). Third, a flight is not delayed if it arrives 10 minutes or less late 

(if you arrive 11 minutes late, you are delayed). 

2. How much is the flight delay. Here, we set three scales: less than 30 

minutes, less than 120 minutes and more than 120 minutes. We decided 

that passengers are most concerned about the half-hour and two-hour 

threshold regarding a delay. 

All our MATLAB scripts can be found on our git repository: 

https://github.com/shuang2831/Flight-Delay-Predictor  

 
Results 

We have two sets of analysis corresponding to our two different strategies. 

In the “keep-data” strategy, we tried different number of attributes to put into the 

test and different settings on the Ikb algorithm built into WEKA (used 1-NN and 5-

NN). The average accuracy is ~71%. In more detailed analysis: 

 The algorithm works better if we don’t have “Arrival Time” and “Departure 

Time” as attributes. The result is 73% if we don’t have them and 68% if we 

do. 

 The 5-NN setting performs slightly better than the 1-NN setting with a 1% 

difference. 

 The algorithm trains very slowly on the dataset 

Although there seems to be a correlation among similar flights, the accuracy 

level does not meet our goal. 

https://github.com/shuang2831/Flight-Delay-Predictor


In the “partition” strategy, we used J48 tree built into WEKA. We varied a few 

parameters on the tree (turned on/off error-reduced-pruning). The average 

accuracy is ~75% with the correct set of decision-making on the dataset. In more 

detailed analysis: 

 Reduced-error-pruning increases the accuracy in some cases and 

decreases the accuracy in others. 

 It trains the dataset much faster than KNN. 

 The most information gain comes from departure / arrival time since they 

end up in the root of the decision tree 

 Also valuable is the original airport.  

 The detailed list of attributes as they stand in the decision tree is shown 

below 

 As one can see from the list, following original airport is carrier, after that is 

destination airport. 

 

 

 

 

 

Figure 1: Weka Decision Tree Results 

https://flightdelaypredictor.files.wordpress.com/2015/06/capture2.png


The two most important decisions about the dataset in this case are how we define 

delay and what attributes we include for the test. The results with each setup is 

summarized in the table below with each row being 0, 5 or 10 minutes for defining 

delay (please see the previous section for the definition) and each column being 

attribute inclusion. 

As one can see from the table, since departure time / arrival time are the most 

importance pieces of data, they increase the accuracy of the model by ~5%. In 

addition, by setting the delay definition to 10 minutes, we have a lot better accuracy 

in telling whether a flight is delayed or not. 

The best accuracy we can achieve by this strategy is 78%. This meets our goal. 

A snapshot of the WEKA result page for the accuracy showing the 78% acquired 

accuracy is shown below 

 

Delay definition / Attribute 

Inclusion 

No Departure / Arrival 

Time 

Departure / Arrival 

Time 

>0 minutes 65% — 

>5 minutes 68% 73% 

>10 minutes 73% 78% 



 

 

 

 

 

 

 

 

 

 

Below is a cross-method comparison between KNN and J48 decision tree for 

different setup we had. From this graph, one can see that our delay definition has 

little impact on KNN but large impact on J48. Both data are positively impacted by 

the inclusion of the additional arrival / departure data. 

Figure 2: Weka results page for J48 Decision Tree (78% Accuracy) 
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Figure 3: Graph Comparison for KNN and J48 

When we run the previous tests to predict which delay level a flight is likely to fall, 

the accuracy drops to as low as 54%. Recall that we divided the delay level to 

=120. 

There are a few reasons for such a low accuracy. Compared to the binary 

prediction of whether a flight is delayed or not, there are much fewer instances 

where flights are delayed for longer time. Thus, the data set is magnitude smaller 

than the origin. Also, when a flight is delayed for longer time, it is more out of 

random possibility (aircraft suddenly needs maintenance, the previous arrives late, 

etc.) so that there is far smaller correlation between such cases with the data we 

collected. Due to these factors, our model proves little use to predict how long a 

flight is likely to delay. 
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Conclusions 

Our model predicts whether the flight or not at an accuracy of 78%, meeting our 

preset goal and provides a reasonable reference for the user. Our model, however, 

does not perform well when predicting how long a flight is likely to be delayed. 

In our analysis, we took two alternative approaches to tackle the problem, one of 

them keeping the data set in the original form, the other one partitioning data into 

more general forms. The latter proves to be the better choice while the former is 

also acceptable. From the results, we can see that there is indeed some degree of 

correlation between the data and the likelihood of delay. The most telling attributes 

towards delay or not are departure / arrival time and departure / arrival time. 

Future Steps 

While we found the J48 decision tree to be the best classifier to use for the data 

that we partitioned and used, we believe that there are possibly methods that 

would work even better since 78% barely passes our basic goal. 

Another step we’d love to take is finding more complex ways of manipulating our 

data to fit the needs of the classifiers. We partitioned most attributes into different 

rankings and categories, but we believe more could have been done. If we had the 

chance we would dive into designing various algorithms that would alter the data in 

different ways. 

One last step would be to be able to run the project on larger sets of data over 

various years. The amount time span of data we used was very limited having 

around only 2 or 3 years of data to learn from. If possible we’d like to find a way to 



download at least a decade of date and efficiently pick out enough instances to 

have our project learn from. 

 


